検索

Deep Insider

初心者向け、データ分析・AI・機械学習・Pythonの勉強方法 Deep Insiderで学ぼう

データ分析、AI/機械学習の実装、生成AIの活用(まとめてデータサイエンス)は、もはや多くの人に必要な知識となっています。これらの基礎はどうやって学べばよいのでしょうか? オススメの勉強方法を紹介します。

連載『やさしいデータ分析』シリーズ:【記述統計&回帰分析編】【確率分布編】が完結。続編【推測統計(区間推定編・仮説検定編)】を連載中!

データを分析して、その背後にある有益な情報を取り出したい人向け。数学などの前提知識は不要! 身近に使える表計算ソフトで体験しながらデータ分析の考え方を学ぼう。

[pandas超入門]Pythonでデータ分析を始めよう! データの読み書き方法
Pythonデータ処理入門:

Pythonでデータ処理を始めようという人に向けて、pandasとは何か、インストール、データセットの読み込みと書き込み、簡単なメソッド呼び出しまでを説明します。(2024年4月5日)

SNS

Twitter
Facebook
YouTube
GitHub

編集責任:デジタルアドバンテージ

Copyright© Digital Advantage Corp. All Rights Reserved.

AI IoT 関連記事

news033.jpg

Salesforceは「AIエージェント成熟度モデル」を開発した。企業がAIエージェントを安全かつ効果的に導入、活用するためのもので、5段階の成熟度レベルと、各段階を進むための実践的なステップを提示している。(2025/06/06)

news025.jpg

SlashDataは、開発者調査レポート「State of the Developer Nation」の中から、開発者の生成AI導入状況の調査結果をブログで紹介した。それによると、アプリケーションに生成AI機能を追加している開発者は全体の20%だった。(2025/06/04)

news046.jpg

OpenAIは、エージェント型AIアプリケーションを構築するためのAPI「Responses API」におけるリモートMCPサーバのサポート、同APIで利用可能なビルトインツールの拡充を発表した、同APIの信頼性、可視性、プライバシーを向上させることが目的だ。(2025/05/28)

news082.jpg

ガートナージャパンは、「AIエージェント」と「エージェント型AI」に関する見解を発表した。両社の違いに加え、チャットbotやRPAとの違いも図を交えて解説している。(2025/05/23)

news080.jpg

Microsoftは開発者向け年次カンファレンス「Microsoft Build 2025」で、「Windows 11」での「MCP」のネイティブサポートを発表した。同カンファレンスで多数発表されたAI開発のための新しいプラットフォームの一つだ。(2025/05/23)

TOP STORIES

お勧め連載

5分で分かるAI・機械学習・データサイエンス

「5分で分かるAI・機械学習・データサイエンス」は、 「機械学習」といった人工知能やデータサイエンスに関連する誰もが知っておくべき最重要キーワードの「概要」「歴史」「違い」「仕組み」「課題」「勉強方法」などを分かりやすく5分で説明するコーナーです。

社会人1年生から学ぶ、やさしいデータ分析【Excelで学べる】

『やさしいデータ分析』連載【記述統計&回帰分析編】。データをさまざまな角度から分析し、その背後にある有益な情報を取り出す方法を学びます。身近に使える表計算ソフト(ExcelやGoogleスプレッドシート)を利用。数学などの前提知識は不要です。

社会人1年生から学ぶ、やさしい確率分布【Excelで学べる】

『やさしいデータ分析』連載【確率分布編】。データをさまざまな角度から分析し、その背後にある有益な情報を取り出す方法を学ぶ連載の続編で、確率分布に焦点を当てています。身近に使える表計算ソフト(ExcelやGoogleスプレッドシート)を利用。数学などの前提知識は不要です。

簡単に試せるAI・機械学習

もはやAIや機械学習の実践に高度な知識は必要ない?! 前提知識ができるだけ不要で、誰でも簡単に試せるAIや機械学習をコンパクトに紹介する。手元で実際に動かし、その面白さや特徴、利点/欠点を体感しよう。

Stable Diffusion入門

「今、画像生成AIがはやっているみたいだけど、何ができて、何がすごいのかよく分からない」という普通の人に向けて、Stable Diffusionの概要と基本的な仕組み、それを簡単に使うためのサービスなどをできるだけ分かりやすくコンパクトに紹介する連載。

Pythonデータ処理入門

「Python入門」に続くPython学習シリーズ。「Pythonは覚えたけど、次は何を学んで、どうやって膨大な量のデータを処理したらいいの?」という方に向けて、NumPy/pandas/Matplotlibといったライブラリの使い方や、それらを使って実際にデータ処理を行う方法を説明する連載。

解決!Python

「あれ、どう書くんだっけ?」という疑問を、短いコードでズバッと解決するTIPS連載。

Pythonステップアップクイズ

クイズを解きながら、Pythonのスキルを一緒に上げていきましょう!

Google Colaboratory入門

AI・機械学習・ディープラーニングを始めるが、プログラミングについてまったく初めての人に向けて、その作業環境の選択指針やお薦めの「Jupyter Notebook」のオンライン版「Google Colaboratory」の基本的な使い方を分かりやすく紹介する連載。

Amazon SageMaker Studio Lab入門

無料のAmazon SageMaker Studio Labを解説する連載。概要からスペック、Colabとの違い、使い方までを紹介する。

Pythonで学ぶ「機械学習」入門 【知識ゼロでも大丈夫】

「機械学習は難しそう」と思っていませんか? 心配は要りません。この連載では、「知識ゼロから学べる」をモットーに、機械学習の基礎と各手法を図解と簡潔な説明で分かりやすく解説します。Pythonを使った実践演習もありますので、自分の手を動かすことで実用的なスキルを身に付けられます。

AI・機械学習の数学入門 ― 中学・高校数学のキホンから学べる

機械学習の数学は難しい!? そう思っている人はこの連載から学んでみよう。サブタイトルは「― 中学/高校数学のキホンから学べる」。本連載では、小学校で習う「四則演算(足し算/引き算/掛け算/割り算)」を使って、機械学習の数学をできるだけ分かりやすく簡単に説明していく。

PyTorch入門

PyTorchの勉強はシンプルなニューラルネットワーク(NN)を実装することから始めてみよう。まずはニューロンのモデル定義から始め、フィードフォワードとバックプロパゲーション、PyTorchテンソルの基礎、データローダー、最適化、評価まで一通りを解説。さらにCNNやRNNの実装例を通して、PyTorchにも習熟する連載。

機械学習&ディープラーニング環境構築入門

機械学習およびディープラーニング用にGPUを活用した環境の構築方法を説明する連載。GPUの利用をお勧めしますが、CPUで取りあえず始めることもできます。

作って試そう! ディープラーニング工作室

実際にコードを書きながら「人工知能/機械学習/ディープラーニング」を学んでいこう。

機械学習の参考事例

機械学習・ディープラーニングの活用現場をエンジニア目線で技術的に解説する不定期連載。

Kaggle入門

データ分析/機械学習の競技大会プラットフォーム「Kaggle」についての初心者向け連載。コンペティションの内容から、事例に基づくノウハウ、実際にメダルを受賞してKaggle Masterになるための道標を示す。

過去記事

[an error occurred while processing this directive]